by graphlit
Enables integration between MCP clients and the Graphlit platform, providing ingestion, retrieval, RAG, and publishing capabilities across a wide range of data sources and tools.
Graphlit MCP Server connects MCP‑compatible clients (Cursor, Windsurf, Goose, Cline, etc.) to the Graphlit service, turning Slack, Discord, email, GitHub, Google Drive, PDFs, web pages, audio, video, and many other sources into a searchable, AI‑ready knowledge base.
npx -y graphlit-mcp-server
{
"GRAPHLIT_ORGANIZATION_ID": "<YOUR_ORG_ID>",
"GRAPHLIT_ENVIRONMENT_ID": "<YOUR_ENV_ID>",
"GRAPHLIT_JWT_SECRET": "<YOUR_JWT_SECRET>"
}
Q: What runtime is required? A: Node.js 18.x or higher.
Q: Do I need all data‑connector tokens?
A: Only GRAPHLIT_ORGANIZATION_ID
, GRAPHLIT_ENVIRONMENT_ID
, and GRAPHLIT_JWT_SECRET
are mandatory. Additional tokens are optional for specific connectors.
Q: Can I run the server on Windows?
A: Yes. If using NPX, you may need to invoke it via cmd.exe /c npx
.
Q: How do I get support? A: Submit issues on the GitHub repository, consult the Graphlit API docs, or join the Graphlit Discord community.
Q: Is there a one‑click install for VS Code? A: Yes—click the NPX badges in the README to launch an automated install.
The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. This document outlines the setup process and provides a basic example of using the client.
Ingest anything from Slack, Discord, websites, Google Drive, email, Jira, Linear or GitHub into a Graphlit project - and then search and retrieve relevant knowledge within an MCP client like Cursor, Windsurf, Goose or Cline.
Your Graphlit project acts as a searchable, and RAG-ready knowledge base across all your developer and product management tools.
Documents (PDF, DOCX, PPTX, etc.) and HTML web pages will be extracted to Markdown upon ingestion. Audio and video files will be transcribed upon ingestion.
Web crawling and web search are built-in as MCP tools, with no need to integrate other tools like Firecrawl, Exa, etc. separately.
You can read more about the MCP Server use cases and features on our blog.
Watch our latest YouTube video on using the Graphlit MCP Server with the Goose MCP client.
For any questions on using the MCP Server, please join our Discord community and post on the #mcp channel.
Before you begin, ensure you have the following:
The Graphlit MCP Server supports environment variables to be set for authentication and configuration:
GRAPHLIT_ENVIRONMENT_ID
: Your environment ID.GRAPHLIT_ORGANIZATION_ID
: Your organization ID.GRAPHLIT_JWT_SECRET
: Your JWT secret for signing the JWT token.You can find these values in the API settings dashboard on the Graphlit Platform.
For quick installation, use one of the one-click install buttons below:
For manual installation, add the following JSON block to your User Settings (JSON) file in VS Code. You can do this by pressing Ctrl + Shift + P
and typing Preferences: Open User Settings (JSON)
.
Optionally, you can add it to a file called .vscode/mcp.json
in your workspace. This will allow you to share the configuration with others.
Note that the
mcp
key is not needed in the.vscode/mcp.json
file.
{
"mcp": {
"inputs": [
{
"type": "promptString",
"id": "organization_id",
"description": "Graphlit Organization ID",
"password": true
},
{
"type": "promptString",
"id": "environment_id",
"description": "Graphlit Environment ID",
"password": true
},
{
"type": "promptString",
"id": "jwt_secret",
"description": "Graphlit JWT Secret",
"password": true
}
],
"servers": {
"graphlit": {
"command": "npx",
"args": ["-y", "graphlit-mcp-server"],
"env": {
"GRAPHLIT_ORGANIZATION_ID": "${input:organization_id}",
"GRAPHLIT_ENVIRONMENT_ID": "${input:environment_id}",
"GRAPHLIT_JWT_SECRET": "${input:jwt_secret}"
}
}
}
}
}
To install graphlit-mcp-server in Windsurf IDE application, Cline should use NPX:
npx -y graphlit-mcp-server
Your mcp_config.json file should be configured similar to:
{
"mcpServers": {
"graphlit-mcp-server": {
"command": "npx",
"args": [
"-y",
"graphlit-mcp-server"
],
"env": {
"GRAPHLIT_ORGANIZATION_ID": "your-organization-id",
"GRAPHLIT_ENVIRONMENT_ID": "your-environment-id",
"GRAPHLIT_JWT_SECRET": "your-jwt-secret",
}
}
}
}
To install graphlit-mcp-server in Cline IDE application, Cline should use NPX:
npx -y graphlit-mcp-server
Your cline_mcp_settings.json file should be configured similar to:
{
"mcpServers": {
"graphlit-mcp-server": {
"command": "npx",
"args": [
"-y",
"graphlit-mcp-server"
],
"env": {
"GRAPHLIT_ORGANIZATION_ID": "your-organization-id",
"GRAPHLIT_ENVIRONMENT_ID": "your-environment-id",
"GRAPHLIT_JWT_SECRET": "your-jwt-secret",
}
}
}
}
To install graphlit-mcp-server in Cursor IDE application, Cursor should use NPX:
npx -y graphlit-mcp-server
Your mcp.json file should be configured similar to:
{
"mcpServers": {
"graphlit-mcp-server": {
"command": "npx",
"args": [
"-y",
"graphlit-mcp-server"
],
"env": {
"GRAPHLIT_ORGANIZATION_ID": "your-organization-id",
"GRAPHLIT_ENVIRONMENT_ID": "your-environment-id",
"GRAPHLIT_JWT_SECRET": "your-jwt-secret",
}
}
}
}
To install graphlit-mcp-server for Claude Desktop automatically via Smithery:
npx -y @smithery/cli install @graphlit/graphlit-mcp-server --client claude
To use the Graphlit MCP Server in any MCP client application, use:
{
"mcpServers": {
"graphlit-mcp-server": {
"command": "npx",
"args": [
"-y",
"graphlit-mcp-server"
],
"env": {
"GRAPHLIT_ORGANIZATION_ID": "your-organization-id",
"GRAPHLIT_ENVIRONMENT_ID": "your-environment-id",
"GRAPHLIT_JWT_SECRET": "your-jwt-secret",
}
}
}
}
Optionally, you can configure the credentials for data connectors, such as Slack, Google Email and Notion. Only GRAPHLIT_ORGANIZATION_ID, GRAPHLIT_ENVIRONMENT_ID and GRAPHLIT_JWT_SECRET are required.
{
"mcpServers": {
"graphlit-mcp-server": {
"command": "npx",
"args": [
"-y",
"graphlit-mcp-server"
],
"env": {
"GRAPHLIT_ORGANIZATION_ID": "your-organization-id",
"GRAPHLIT_ENVIRONMENT_ID": "your-environment-id",
"GRAPHLIT_JWT_SECRET": "your-jwt-secret",
"SLACK_BOT_TOKEN": "your-slack-bot-token",
"DISCORD_BOT_TOKEN": "your-discord-bot-token",
"TWITTER_TOKEN": "your-twitter-token",
"GOOGLE_EMAIL_REFRESH_TOKEN": "your-google-refresh-token",
"GOOGLE_EMAIL_CLIENT_ID": "your-google-client-id",
"GOOGLE_EMAIL_CLIENT_SECRET": "your-google-client-secret",
"LINEAR_API_KEY": "your-linear-api-key",
"GITHUB_PERSONAL_ACCESS_TOKEN": "your-github-pat",
"JIRA_EMAIL": "your-jira-email",
"JIRA_TOKEN": "your-jira-token",
"NOTION_API_KEY": "your-notion-api-key"
}
}
}
}
NOTE: when running 'npx' on Windows, you may need to explicitly call npx via the command prompt.
"command": "C:\\Windows\\System32\\cmd.exe /c npx"
Please refer to the Graphlit API Documentation.
For support with the Graphlit MCP Server, please submit a GitHub Issue.
For further support with the Graphlit Platform, please join our Discord community.
Please log in to share your review and rating for this MCP.
{ "mcpServers": { "graphlit-mcp-server": { "command": "npx", "args": [ "-y", "graphlit-mcp-server" ], "env": { "GRAPHLIT_ORGANIZATION_ID": "<YOUR_ORG_ID>", "GRAPHLIT_ENVIRONMENT_ID": "<YOUR_ENV_ID>", "GRAPHLIT_JWT_SECRET": "<YOUR_JWT_SECRET>" } } } }
Discover more MCP servers with similar functionality and use cases
by topoteretes
Enables AI agents to store, retrieve, and reason over past conversations, documents, images, and audio transcriptions by loading data into graph and vector databases with minimal code.
by basicmachines-co
Basic Memory is a local-first knowledge management system that allows users to build a persistent semantic graph from conversations with AI assistants. It addresses the ephemeral nature of most LLM interactions by providing a structured, bi-directional knowledge base that both humans and LLMs can read and write to.
by smithery-ai
mcp-obsidian is a connector that allows Claude Desktop to read and search an Obsidian vault or any directory containing Markdown notes.
by qdrant
Provides a semantic memory layer on top of the Qdrant vector search engine, enabling storage and retrieval of information via the Model Context Protocol.
by GreatScottyMac
A database‑backed MCP server that stores project decisions, progress, architecture, custom data, and vector embeddings, allowing AI assistants in IDEs to retrieve precise, up‑to‑date context for generation tasks.
by StevenStavrakis
Enables AI assistants to read, create, edit, move, delete, and organize notes and tags within an Obsidian vault.
by mem0ai
Provides tools to store, retrieve, and semantically search coding preferences via an SSE endpoint for integration with MCP clients.
by chroma-core
Provides vector, full‑text, and metadata‑based retrieval powered by Chroma for LLM applications, supporting in‑memory, persistent, HTTP, and cloud clients as well as multiple embedding functions.
by andrea9293
MCP Documentation Server is a TypeScript-based server that provides local document management and AI-powered semantic search capabilities, designed to bridge the AI knowledge gap.