by fetchSERP
Provides access to all FetchSERP API endpoints for SEO analysis, keyword research, SERP retrieval, and web scraping through an MCP server.
Provides a unified MCP server that exposes the full suite of FetchSERP endpoints, enabling developers and analysts to perform domain and SEO analysis, keyword research, SERP queries, and advanced web scraping—all from a single, easily deployable service.
npx github:fetchSERP/fetchserp-mcp-server-node
. Set the environment variable FETCHSERP_API_TOKEN
with your FetchSERP token./sse
endpoint. Authentication is a single API‑key header.ghcr.io/fetchserp/fetchserp-mcp-server-node:latest
and run with -e FETCHSERP_API_TOKEN=...
. Add -p 8000:8000
and optionally -e MCP_HTTP_MODE=true
for HTTP mode.mcp
tool pointing to the server URL and passing the token in the Authorization
header.Q: Do I need to install anything locally? A: No. The npx mode runs the server directly from GitHub without any installation steps.
Q: How is authentication handled?
A: Set the FETCHSERP_API_TOKEN
environment variable. For HTTP mode, pass the token as a Bearer
token in the Authorization
header.
Q: Can I run multiple instances for scaling? A: Yes. Deploy the Docker image behind a load balancer or run multiple HTTP‑mode containers.
Q: What if I need JavaScript rendering for scraping?
A: Use the scrape_webpage_js
or scrape_webpage_js_proxy
tools, which execute custom JS on the target page.
Q: Is there a free tier? A: New users receive 250 free FetchSERP credits after signing up at https://www.fetchserp.com.
A Model Context Protocol (MCP) server that exposes the FetchSERP API for SEO, SERP analysis, web scraping, and keyword research.
This MCP server provides access to all FetchSERP API endpoints:
No installation required! This MCP server runs directly from GitHub using npx.
Get your FetchSERP API token: Sign up at https://www.fetchserp.com to get your API token. New users get 250 free credits to get started!
This MCP server supports two transport modes:
npx mode (Option 1):
HTTP mode (Option 2):
Option 1: Using npx (Local/Remote GitHub) Add this server to your MCP client configuration. For example, in Claude Desktop using github registry :
{
"mcpServers": {
"fetchserp": {
"command": "npx",
"args": [
"github:fetchSERP/fetchserp-mcp-server-node"
],
"env": {
"FETCHSERP_API_TOKEN": "your_fetchserp_api_token_here"
}
}
}
}
or using npm registry
{
"mcpServers": {
"fetchserp": {
"command": "npx",
"args": ["fetchserp-mcp-server"],
"env": {
"FETCHSERP_API_TOKEN": "your_fetchserp_api_token_here"
}
}
}
}
Option 2: Claude API with MCP Server For programmatic usage with Claude's API and your deployed MCP server:
const claudeRequest = {
model: "claude-sonnet-4-20250514",
max_tokens: 1024,
messages: [
{
role: "user",
content: question
}
],
// MCP Server Configuration
mcp_servers: [
{
type: "url",
url: "https://mcp.fetchserp.com/sse",
name: "fetchserp",
authorization_token: FETCHSERP_API_TOKEN,
tool_configuration: {
enabled: true
}
}
]
};
const response = await httpRequest('https://api.anthropic.com/v1/messages', {
method: 'POST',
headers: {
'x-api-key': CLAUDE_API_KEY,
'anthropic-version': '2023-06-01',
'anthropic-beta': 'mcp-client-2025-04-04',
'content-type': 'application/json'
}
}, JSON.stringify(claudeRequest));
Option 3: OpenAI API with MCP Server For programmatic usage with OpenAI's API and your deployed MCP server:
const openai = new OpenAI({ apiKey: process.env.OPENAI_API_KEY });
const res = await openai.responses.create({
model: "gpt-4.1",
tools: [
{
type: "mcp",
server_label: "fetchserp",
server_url: "https://mcp.fetchserp.com/sse",
headers: {
Authorization: `Bearer ${FETCHSERP_API_TOKEN}`
}
}
],
input: question
});
console.log(res.choices[0].message);
Option 4: Docker Use the pre-built Docker image from GitHub Container Registry for containerized deployment:
{
"mcpServers": {
"fetchserp": {
"command": "docker",
"args": [
"run",
"-i",
"--rm",
"-e",
"FETCHSERP_API_TOKEN",
"ghcr.io/fetchserp/fetchserp-mcp-server-node:latest"
],
"env": {
"FETCHSERP_API_TOKEN": "your_fetchserp_api_token_here"
}
}
}
}
Docker Features:
Manual Docker Usage:
# Pull the latest image
docker pull ghcr.io/fetchserp/fetchserp-mcp-server-node:latest
# Run with environment variable
docker run -i --rm \
-e FETCHSERP_API_TOKEN="your_token_here" \
ghcr.io/fetchserp/fetchserp-mcp-server-node:latest
# Or run in HTTP mode on port 8000
docker run -p 8000:8000 \
-e FETCHSERP_API_TOKEN="your_token_here" \
-e MCP_HTTP_MODE=true \
ghcr.io/fetchserp/fetchserp-mcp-server-node:latest
get_backlinks
Get backlinks for a domain
get_domain_info
Get comprehensive domain information
get_domain_emails
Extract emails from a domain
get_playwright_mcp
Use GPT-4.1 to remote control a browser via a Playwright MCP server
This endpoint uses GPT-4.1 to remote control a browser via a Playwright MCP server.
get_webpage_seo_analysis
Comprehensive SEO analysis of a webpage
get_webpage_ai_analysis
AI-powered webpage analysis
generate_wordpress_content
Generate WordPress content using AI with customizable prompts and models
Generates SEO-optimized WordPress content including title and content (800-1500 words) with keyword targeting in the first 100 words.
generate_social_content
Generate social media content using AI with customizable prompts and models
Generates engaging social media content optimized for various platforms and audiences.
get_moz_analysis
Get Moz domain authority and metrics
get_keywords_search_volume
Get search volume for keywords
get_keywords_suggestions
Get keyword suggestions
get_long_tail_keywords
Generate long-tail keywords
get_serp_results
Get search engine results
get_serp_html
Get SERP results with HTML content
get_serp_results
get_serp_text
Get SERP results with text content
get_serp_results
get_serp_ai_mode
Get SERP with AI Overview and AI Mode response
Returns AI overview and AI mode response for the query. Less reliable than the 2-step process but returns results in under 30 seconds.
check_page_indexation
Check if domain is indexed for keyword
get_domain_ranking
Get domain ranking for keyword
scrape_webpage
Scrape webpage without JavaScript
scrape_domain
Scrape multiple pages from domain
scrape_webpage_js
Scrape webpage with custom JavaScript
scrape_webpage_js_proxy
Scrape webpage with JavaScript and proxy
get_user_info
Get user information and API credits
You need a FetchSERP API token to use this server.
Getting your API token:
Set the token as an environment variable:
export FETCHSERP_API_TOKEN="your_token_here"
The server includes comprehensive error handling:
docker build --platform=linux/amd64 -t olivier86/fetchserp-mcp-server-node:latest --push .
docker build --platform=linux/amd64 -t ghcr.io/fetchserp/mcp-server-node:latest --push .
docker run -p 8000:8000 olivier86/fetchserp-mcp-server-node:latest
nohup ngrok http 8000 --domain guinea-dominant-jolly.ngrok-free.app > /var/log/ngrok.log 2>&1 &
npm login npm publish --access public
Please log in to share your review and rating for this MCP.
{ "mcpServers": { "fetchserp": { "command": "npx", "args": [ "github:fetchSERP/fetchserp-mcp-server-node" ], "env": { "FETCHSERP_API_TOKEN": "<YOUR_API_TOKEN>" } } } }
Discover more MCP servers with similar functionality and use cases
by open-strategy-partners
A Model Context Protocol (MCP) server that empowers LLMs to use some of Open Srategy Partners' core writing and product marketing techniques.
by trypeggy
facebook-ads-library-mcp is a Model Context Protocol (MCP) server that allows users to search Facebook's public ad library. It enables analysis of advertising strategies, ad content, and competitive landscapes for companies and brands.
by gomarble-ai
Facebook Ads MCP Server is an interface that provides programmatic access to Facebook Ads data and management features. It allows users to automate interaction with their Facebook advertising campaigns and integrate ad data into other systems.
by AudienseCo
mcp-audiense-insights is a tool that connects AI agents to the Audiense Insights platform. It enables AI agents to access and analyze marketing insights and audience data for various use cases like market research and content strategy.
by data-skunks
Provides keyword research capabilities—including People Also Ask questions, Google autocomplete suggestions, Reddit and Quora queries, and semantic keyword extraction—through a Model Context Protocol (MCP) server that integrates with KeywordsPeopleUse.
by MarketplaceAdPros
amazon-ads-mcp-server is a server that facilitates interaction with Amazon Advertising data. It allows users to connect their Amazon Advertising accounts to access various advertising resources and reports, enabling automated ad management, custom reporting, and integration with AI/ML models.
by universal-mcp
Braze is a Universal MCP (Model Context Protocol) server that provides a standardized interface for interacting with Braze's tools and services through a unified API. It is designed for managing customer engagement, user profiles, and messaging campaigns.
by netdata
Real-time, per‑second infrastructure monitoring platform that provides instant insights, auto‑discovery, edge‑based machine‑learning anomaly detection, and lightweight visualizations without requiring complex configuration.
by zed-industries
Provides real-time collaborative editing powered by Rust, enabling developers to edit code instantly across machines with a responsive, GPU-accelerated UI.