by fastnai
Provides a scalable platform for dynamic tool registration and execution via API definitions, integrating services such as Claude.ai and Cursor.ai.
Fastn Server enables developers to register tools dynamically and execute them based on API definitions. It acts as a unified backend that connects to external services like Slack, Notion, HubSpot, Claude.ai, and Cursor.ai, handling authentication, logging, and error management.
pip install fastn-mcp-server
Alternatively, clone the repository and install with UV in a virtual environment.--api_key
, --space_id
, --tenant_id
, --auth_token
).fastn-mcp-server --api_key YOUR_API_KEY --space_id YOUR_WORKSPACE_ID
or for tenant auth:
fastn-mcp-server --space_id YOUR_WORKSPACE_ID --tenant_id YOUR_TENANT_ID --auth_token YOUR_AUTH_TOKEN
fastn-mcp-server
)Q: Which Python version is required? A: Python 3.10 or higher.
Q: Can I run the server without installing the pip package?
A: Yes, clone the repo, set up a virtual environment with UV, and run uv run fastn-server.py
with the appropriate flags.
Q: How do I expose the server to Claude.ai?
A: Add a JSON entry under mcpServers
in Claude's configuration file that points to the fastn-mcp-server
executable and includes the required authentication arguments.
Q: What if I encounter a "Package Structure Error" during installation?
A: Ensure pyproject.toml
contains:
[tool.hatch.build.targets.wheel]
packages = ["."]
Then reinstall dependencies with uv pip install "httpx>=0.28.1" "mcp[cli]>=1.2.0"
.
The Fastn server is a powerful, scalable platform that enables dynamic tool registration and execution based on API definitions. It seamlessly integrates with services like Claude.ai and Cursor.ai, providing a unified server solution for a wide range of tasks.
The easiest way to install the Fastn server is using pip:
pip install fastn-mcp-server
To find the exact path of the installed command:
which fastn-mcp-server
where fastn-mcp-server
# Clone repository and navigate to directory
git clone <your-repo-url> && cd fastn-server
# macOS/Linux: Install UV, create virtual environment, and install dependencies
curl -LsSf https://astral.sh/uv/install.sh | sh && uv venv && source .venv/bin/activate && uv pip install -e .
# Windows (PowerShell): Install UV, create a virtual environment, and install dependencies
powershell -c "irm https://astral.sh/uv/install.ps1 | iex" && uv venv && .venv\Scripts\activate && uv pip install -e .
# Install dependencies directly
uv pip install "httpx>=0.28.1" "mcp[cli]>=1.2.0"
The server supports two authentication methods:
# Package installation
fastn-mcp-server --api_key YOUR_API_KEY --space_id YOUR_WORKSPACE_ID
# Manual installation
uv run fastn-server.py --api_key YOUR_API_KEY --space_id YOUR_WORKSPACE_ID
# Package installation
fastn-mcp-server --space_id YOUR_WORKSPACE_ID --tenant_id YOUR_TENANT_ID --auth_token YOUR_AUTH_TOKEN
# Manual installation
uv run fastn-server.py --space_id YOUR_WORKSPACE_ID --tenant_id YOUR_TENANT_ID --auth_token YOUR_AUTH_TOKEN
Open the Claude configuration file:
notepad "%APPDATA%\Claude\claude_desktop_config.json"
or code "%APPDATA%\Claude\claude_desktop_config.json"
code ~/Library/Application\ Support/Claude/claude_desktop_config.json
Add the appropriate configuration:
{
"mcpServers": {
"fastn": {
"command": "/path/to/fastn-mcp-server",
"args": [
"--api_key",
"YOUR_API_KEY",
"--space_id",
"YOUR_WORKSPACE_ID"
]
}
}
}
Or with tenant authentication:
{
"mcpServers": {
"fastn": {
"command": "/path/to/fastn-mcp-server",
"args": [
"--space_id",
"YOUR_WORKSPACE_ID",
"--tenant_id",
"YOUR_TENANT_ID",
"--auth_token",
"YOUR_AUTH_TOKEN"
]
}
}
}
API Key authentication:
{
"mcpServers": {
"fastn": {
"command": "/path/to/your/uv",
"args": [
"--directory",
"/path/to/your/fastn-server",
"run",
"fastn-server.py",
"--api_key",
"YOUR_API_KEY",
"--space_id",
"YOUR_WORKSPACE_ID"
]
}
}
}
Tenant authentication:
{
"mcpServers": {
"fastn": {
"command": "/path/to/your/uv",
"args": [
"--directory",
"/path/to/your/fastn-server",
"run",
"fastn-server.py",
"--space_id",
"YOUR_WORKSPACE_ID",
"--tenant_id",
"YOUR_TENANT_ID",
"--auth_token",
"YOUR_AUTH_TOKEN"
]
}
}
}
API Key authentication:
/path/to/fastn-mcp-server --api_key YOUR_API_KEY --space_id YOUR_WORKSPACE_ID
Tenant authentication:
/path/to/fastn-mcp-server --space_id YOUR_WORKSPACE_ID --tenant_id YOUR_TENANT_ID --auth_token YOUR_AUTH_TOKEN
API Key authentication:
/path/to/your/uv --directory /path/to/your/fastn-server run fastn-server.py --api_key YOUR_API_KEY --space_id YOUR_WORKSPACE_ID
Tenant authentication:
/path/to/your/uv --directory /path/to/your/fastn-server run fastn-server.py --space_id YOUR_WORKSPACE_ID --tenant_id YOUR_TENANT_ID --auth_token YOUR_AUTH_TOKEN
If you encounter an error like this during installation:
ValueError: Unable to determine which files to ship inside the wheel using the following heuristics:
The most likely cause of this is that there is no directory that matches the name of your project (fastn).
Quick Fix:
pyproject.toml
has the wheel configuration:[tool.hatch.build.targets.wheel]
packages = ["."]
uv pip install "httpx>=0.28.1" "mcp[cli]>=1.2.0"
This project is licensed under the terms included in the LICENSE file.
Please log in to share your review and rating for this MCP.
Discover more MCP servers with similar functionality and use cases
by danny-avila
Provides a customizable ChatGPT‑like web UI that integrates dozens of AI models, agents, code execution, image generation, web search, speech capabilities, and secure multi‑user authentication, all open‑source and ready for self‑hosting.
by ahujasid
BlenderMCP integrates Blender with Claude AI via the Model Context Protocol (MCP), enabling AI-driven 3D scene creation, modeling, and manipulation. This project allows users to control Blender directly through natural language prompts, streamlining the 3D design workflow.
by pydantic
Enables building production‑grade generative AI applications using Pydantic validation, offering a FastAPI‑like developer experience.
by GLips
Figma-Context-MCP is a Model Context Protocol (MCP) server that provides Figma layout information to AI coding agents. It bridges design and development by enabling AI tools to directly access and interpret Figma design data for more accurate and efficient code generation.
by mcp-use
Easily create and interact with MCP servers using custom agents, supporting any LLM with tool calling and offering multi‑server, sandboxed, and streaming capabilities.
by sonnylazuardi
This project implements a Model Context Protocol (MCP) integration between Cursor AI and Figma, allowing Cursor to communicate with Figma for reading designs and modifying them programmatically.
by lharries
WhatsApp MCP Server is a Model Context Protocol (MCP) server for WhatsApp that allows users to search, read, and send WhatsApp messages (including media) through AI models like Claude. It connects directly to your personal WhatsApp account via the WhatsApp web multi-device API and stores messages locally in a SQLite database.
by idosal
GitMCP is a free, open-source remote Model Context Protocol (MCP) server that transforms any GitHub project into a documentation hub, enabling AI tools to access up-to-date documentation and code directly from the source to eliminate "code hallucinations."
by Klavis-AI
Klavis AI provides open-source Multi-platform Control Protocol (MCP) integrations and a hosted API for AI applications. It simplifies connecting AI to various third-party services by managing secure MCP servers and authentication.