by ChristianHinge
dicom-mcp is a Python-based server that enables AI assistants to interact with DICOM servers. It facilitates the integration of AI models into medical workflows by allowing for querying, reading, and moving medical imaging data.
dicom-mcp (Model Context Protocol) is a Python-based server that enables AI assistants to interact with DICOM servers (PACS, VNA, etc.). It allows for querying, reading, and moving medical imaging data, facilitating the integration of AI models into medical workflows.
You can install dicom-mcp using uv or pip:
uv tool install dicom-mcp
# or
pip install dicom-mcp
Alternatively, you can clone the repository and install it:
git clone https://github.com/ChristianHinge/dicom-mcp
cd dicom-mcp
uv venv
source .venv/bin/activate
uv pip install -e ".[dev]"
dicom-mcp requires a YAML configuration file (e.g., config.yaml) to define DICOM nodes and calling AE titles. An example configuration is provided:
nodes:
main:
host: "localhost"
port: 4242
ae_title: "ORTHANC"
description: "Local Orthanc DICOM server"
current_node: "main"
calling_aet: "MCPSCU"
Integrate dicom-mcp into your client configuration (e.g., claude_desktop_config.json):
{
"mcpServers": {
"dicom": {
"command": "uv",
"args": ["tool","dicom-mcp", "/path/to/your_config.yaml"]
}
}
}
Q: Is dicom-mcp meant for clinical use?
A: No, dicom-mcp is not meant for clinical use and should not be connected to live hospital databases or databases with patient-sensitive data. It is intended for use with locally hosted open-weight LLMs for complete data privacy.
Q: What are the core tools provided by dicom-mcp?
A: dicom-mcp provides tools for querying metadata (query_patients, query_studies, query_series, query_instances), reading DICOM reports (extract_pdf_text_from_dicom), sending DICOM images (move_series, move_study), and various utilities (list_dicom_nodes, switch_dicom_node, verify_connection, get_attribute_presets).
Q: How can I debug dicom-mcp? A: You can use the MCP Inspector for debugging server communication:
npx @modelcontextprotocol/inspector uv run dicom-mcp /path/to/your_config.yaml --transport stdio
The dicom-mcp server enables AI assistants to query, read, and move data on DICOM servers (PACS, VNA, etc.).
🤝 Contribute • 📝 Report Bug • 📝 Blog Post 1
---------------------------------------------------------------------
🧑⚕️ User: "Any significant findings in John Doe's previous CT report?"
🧠 LLM → ⚙️ Tools:
query_patients → query_studies → query_series → extract_pdf_text_from_dicom
💬 LLM Response: "The report from 2025-03-26 mentions a history of splenomegaly (enlarged spleen)"
🧑⚕️ User: "What's the volume of his spleen at the last scan and the scan today?"
🧠 LLM → ⚙️ Tools:
(query_studies → query_series → move_series → query_series → extract_pdf_text_from_dicom) x2
(The move_series tool sends the latest CT to a DICOM segmentation node, which returns volume PDF report)
💬 LLM Response: "last year 2024-03-26: 412cm³, today 2025-04-10: 350cm³"
---------------------------------------------------------------------
dicom-mcp provides tools to:
Install using uv or pip:
uv tool install dicom-mcp
Or by cloning the repository:
# Clone and set up development environment
git clone https://github.com/ChristianHinge/dicom-mcp
cd dicom mcp
# Create and activate virtual environment
uv venv
source .venv/bin/activate
# Install with test dependencies
uv pip install -e ".[dev]"
dicom-mcp requires a YAML configuration file (config.yaml or similar) defining DICOM nodes and calling AE titles. Adapt the configuration or keep as is for compatibility with the sample ORTHANC Server.
nodes:
main:
host: "localhost"
port: 4242
ae_title: "ORTHANC"
description: "Local Orthanc DICOM server"
current_node: "main"
calling_aet: "MCPSCU"
[!WARNING] DICOM-MCP is not meant for clinical use, and should not be connected with live hospital databases or databases with patient-sensitive data. Doing so could lead to both loss of patient data, and leakage of patient data onto the internet. DICOM-MCP can be used with locally hosted open-weight LLMs for complete data privacy.
If you don't have a DICOM server available, you can run a local ORTHANC server using Docker:
Clone the repository and install test dependencies pip install -e ".[dev]
cd tests
docker ocmpose up -d
cd ..
pytest # uploads dummy pdf data to ORTHANC server
UI at http://localhost:8042
Add to your client configuration (e.g. claude_desktop_config.json):
{
"mcpServers": {
"dicom": {
"command": "uv",
"args": ["tool","dicom-mcp", "/path/to/your_config.yaml"]
}
}
}
For development:
{
"mcpServers": {
"arxiv-mcp-server": {
"command": "uv",
"args": [
"--directory",
"path/to/cloned/dicom-mcp",
"run",
"dicom-mcp",
"/path/to/your_config.yaml"
]
}
}
}
dicom-mcp provides four categories of tools for interaction with DICOM servers and DICOM data.
query_patients: Search for patients based on criteria like name, ID, or birth date.query_studies: Find studies using patient ID, date, modality, description, accession number, or Study UID.query_series: Locate series within a specific study using modality, series number/description, or Series UID.query_instances: Find individual instances (images/objects) within a series using instance number or SOP Instance UIDextract_pdf_text_from_dicom: Retrieve a specific DICOM instance containing an encapsulated PDF and extract its text content.move_series: Send a specific DICOM series to another configured DICOM node using C-MOVE.move_study: Send an entire DICOM study to another configured DICOM node using C-MOVE.list_dicom_nodes: Show the currently active DICOM node and list all configured nodes.switch_dicom_node: Change the active DICOM node for subsequent operations.verify_connection: Test the DICOM network connection to the currently active node using C-ECHO.get_attribute_presets: List the available levels of detail (minimal, standard, extended) for metadata query results.The tools can be chained together to answer complex questions:
Tests require a running Orthanc DICOM server. You can use Docker:
# Navigate to the directory containing docker-compose.yml (e.g., tests/)
cd tests
docker-compose up -d
Run tests using pytest:
# From the project root directory
pytest
Stop the Orthanc container:
cd tests
docker-compose down
Use the MCP Inspector for debugging the server communication:
npx @modelcontextprotocol/inspector uv run dicom-mcp /path/to/your_config.yaml --transport stdio
Please log in to share your review and rating for this MCP.
Discover more MCP servers with similar functionality and use cases
by danny-avila
Provides a customizable ChatGPT‑like web UI that integrates dozens of AI models, agents, code execution, image generation, web search, speech capabilities, and secure multi‑user authentication, all open‑source and ready for self‑hosting.
by ahujasid
BlenderMCP integrates Blender with Claude AI via the Model Context Protocol (MCP), enabling AI-driven 3D scene creation, modeling, and manipulation. This project allows users to control Blender directly through natural language prompts, streamlining the 3D design workflow.
by pydantic
Enables building production‑grade generative AI applications using Pydantic validation, offering a FastAPI‑like developer experience.
by GLips
Figma-Context-MCP is a Model Context Protocol (MCP) server that provides Figma layout information to AI coding agents. It bridges design and development by enabling AI tools to directly access and interpret Figma design data for more accurate and efficient code generation.
by mcp-use
Easily create and interact with MCP servers using custom agents, supporting any LLM with tool calling and offering multi‑server, sandboxed, and streaming capabilities.
by sonnylazuardi
This project implements a Model Context Protocol (MCP) integration between Cursor AI and Figma, allowing Cursor to communicate with Figma for reading designs and modifying them programmatically.
by lharries
WhatsApp MCP Server is a Model Context Protocol (MCP) server for WhatsApp that allows users to search, read, and send WhatsApp messages (including media) through AI models like Claude. It connects directly to your personal WhatsApp account via the WhatsApp web multi-device API and stores messages locally in a SQLite database.
by idosal
GitMCP is a free, open-source remote Model Context Protocol (MCP) server that transforms any GitHub project into a documentation hub, enabling AI tools to access up-to-date documentation and code directly from the source to eliminate "code hallucinations."
by Klavis-AI
Klavis AI provides open-source Multi-platform Control Protocol (MCP) integrations and a hosted API for AI applications. It simplifies connecting AI to various third-party services by managing secure MCP servers and authentication.