by drAbreu
A streamlined Model Context Protocol (MCP) server for author disambiguation and academic research using the OpenAlex.org API, specifically designed for AI agents with optimized data structures and enhanced functionality.
alex-mcp is a Model Context Protocol (MCP) server that provides professional, ML-powered author disambiguation and comprehensive researcher profiles using the OpenAlex database. It is optimized for AI agents, offering streamlined data, fast processing, and structured responses for efficient academic research.
git clone https://github.com/drAbreu/alex-mcp.git && cd alex-mcp
python3 -m venv venv && source venv/bin/activate
pip install -e .
export OPENALEX_MAILTO=your-email@domain.com
./run_alex_mcp.sh
or alex-mcp
agents.mcp.MCPServerStdio
with appropriate parameters.uvx
with the repository URL and version.search_authors
: Search for authors with streamlined output for AI agents, including parameters for name, institution, topic, country code, and limit.retrieve_author_works
: Retrieve works for a given author with enhanced filtering capabilities, including parameters for author ID, limit, order by, publication year, type, institution ID, retraction status, and open access status.Q: What are the required environment variables?
A: OPENALEX_MAILTO
is required. Optional settings include OPENALEX_MAX_AUTHORS
, OPENALEX_USER_AGENT
, ALEX_MCP_VERSION
, OPENALEX_RATE_PER_SEC
, and OPENALEX_RATE_PER_DAY
.
Q: How can I optimize performance?
A: You can configure settings like max_authors_per_query
, max_works_per_author
, enable_all_filters
, detailed_affiliations
, and research_concepts
for comprehensive research applications.
Q: How can I contribute to the project? A: You can contribute by forking the repository, creating a feature branch, adding tests, and submitting a pull request. Development priorities include enhanced filtering, data enrichment, performance optimizations, integration examples, and documentation improvements.
A streamlined Model Context Protocol (MCP) server for author disambiguation and academic research using the OpenAlex.org API. Specifically designed for AI agents with optimized data structures and enhanced functionality.
For detailed installation instructions, see INSTALL.md.
Clone the repository:
git clone https://github.com/drAbreu/alex-mcp.git
cd alex-mcp
Create a virtual environment:
python3 -m venv venv
source venv/bin/activate # On Windows: venv\Scripts\activate
Install the package:
pip install -e .
Configure environment:
export OPENALEX_MAILTO=your-email@domain.com
Run the server:
./run_alex_mcp.sh
# Or, if installed as a CLI tool:
alex-mcp
Add to your Claude Desktop configuration file:
{
"mcpServers": {
"alex-mcp": {
"command": "/path/to/alex-mcp/run_alex_mcp.sh",
"env": {
"OPENALEX_MAILTO": "your-email@domain.com"
}
}
}
}
Replace /path/to/alex-mcp
with the actual path to the repository on your system.
You can load this MCP server in your OpenAI agent workflow using the agents.mcp.MCPServerStdio
interface:
from agents.mcp import MCPServerStdio
async with MCPServerStdio(
name="OpenAlex MCP For Author disambiguation and works",
cache_tools_list=True,
params={
"command": "uvx",
"args": [
"--from", "git+https://github.com/drAbreu/alex-mcp.git@4.1.0",
"alex-mcp"
],
"env": {
"OPENALEX_MAILTO": "your-email@domain.com"
}
},
client_session_timeout_seconds=10
) as alex_mcp:
await alex_mcp.connect()
tools = await alex_mcp.list_tools()
print(f"Available tools: {[tool.name for tool in tools]}")
This MCP server is specifically optimized for academic research workflows:
# Optimized for academic research workflows
from alex_agent import run_author_research
# Enhanced functionality with streamlined data
result = await run_author_research(
"Find J. Abreu at EMBO with recent publications"
)
# Clean, structured output for AI processing
print(f"Success: {result['workflow_metadata']['success']}")
print(f"Quality: {result['research_result']['metadata']['result_analysis']['quality_score']}/100")
# Standard launch
uvx --from git+https://github.com/drAbreu/alex-mcp.git@4.1.0 alex-mcp
# With environment variables
OPENALEX_MAILTO=your-email@domain.com uvx --from git+https://github.com/drAbreu/alex-mcp.git@4.1.0 alex-mcp
Search for authors with streamlined output for AI agents.
Parameters:
name
(required): Author name to searchinstitution
(optional): Institution name filtertopic
(optional): Research topic filtercountry_code
(optional): Country code filter (e.g., "US", "DE")limit
(optional): Maximum results (1-25, default: 20)Streamlined Output:
{
"query": "J. Abreu",
"total_count": 3,
"results": [
{
"id": "https://openalex.org/A123456789",
"display_name": "Jorge Abreu-Vicente",
"orcid": "https://orcid.org/0000-0000-0000-0000",
"display_name_alternatives": ["J. Abreu-Vicente", "Jorge Abreu Vicente"],
"affiliations": [
{
"institution": {
"display_name": "European Molecular Biology Organization",
"country_code": "DE"
},
"years": [2023, 2024, 2025]
}
],
"cited_by_count": 316,
"works_count": 25,
"summary_stats": {
"h_index": 9,
"i10_index": 5
},
"x_concepts": [
{
"display_name": "Astrophysics",
"score": 0.8
},
{
"display_name": "Machine Learning",
"score": 0.6
}
]
}
]
}
Features: Clean structure optimized for AI reasoning and disambiguation
Retrieve works for a given author with enhanced filtering capabilities.
Parameters:
author_id
(required): OpenAlex author IDlimit
(optional): Maximum results (1-50, default: 20)order_by
(optional): "date" or "citations" (default: "date")publication_year
(optional): Filter by specific yeartype
(optional): Work type filter (e.g., "journal-article")authorships_institutions_id
(optional): Filter by institutionis_retracted
(optional): Filter retracted worksopen_access_is_oa
(optional): Filter by open access statusEnhanced Output:
{
"author_id": "https://openalex.org/A123456789",
"total_count": 25,
"results": [
{
"id": "https://openalex.org/W123456789",
"title": "A platform for the biomedical application of large language models",
"doi": "10.1038/s41587-024-02534-3",
"publication_year": 2025,
"type": "journal-article",
"cited_by_count": 42,
"authorships": [
{
"author": {
"display_name": "Jorge Abreu-Vicente"
},
"institutions": [
{
"display_name": "European Molecular Biology Organization"
}
]
}
],
"locations": [
{
"source": {
"display_name": "Nature Biotechnology",
"type": "journal"
}
}
],
"open_access": {
"is_oa": true
},
"primary_topic": {
"display_name": "Biomedical Engineering"
}
}
]
}
Features: Comprehensive work data with flexible filtering for targeted queries
This MCP server provides focused, structured data specifically designed for AI agent consumption:
# Target high-impact journal articles
works = await retrieve_author_works(
author_id="https://openalex.org/A123456789",
type="journal-article", # Focus on journal publications
open_access_is_oa=True, # Open access only
order_by="citations", # Most cited first
limit=15
)
# Career transition analysis
authors = await search_authors(
name="J. Abreu",
institution="EMBO", # Current institution
topic="Machine Learning", # Research focus
limit=10
)
from alex_mcp.server import search_authors_core
# Comprehensive author search
results = search_authors_core(
name="J Abreu Vicente",
institution="EMBO",
topic="Machine Learning",
limit=20
)
print(f"Found {results.total_count} candidates")
for author in results.results:
print(f"- {author.display_name}")
if author.affiliations:
current_inst = author.affiliations[0].institution.display_name
print(f" Institution: {current_inst}")
print(f" Metrics: {author.cited_by_count} citations, h-index {author.summary_stats.h_index}")
if author.x_concepts:
fields = [c.display_name for c in author.x_concepts[:3]]
print(f" Research: {', '.join(fields)}")
from alex_mcp.server import retrieve_author_works_core
# Comprehensive work retrieval
works = retrieve_author_works_core(
author_id="https://openalex.org/A5058921480",
type="journal-article", # Academic focus
order_by="citations", # Impact-based ordering
limit=20
)
print(f"Found {works.total_count} publications")
for work in works.results:
print(f"- {work.title}")
if work.locations:
journal = work.locations[0].source.display_name
print(f" Published in: {journal} ({work.publication_year})")
print(f" Impact: {work.cited_by_count} citations")
if work.open_access and work.open_access.is_oa:
print(" β Open Access")
# Analyze career transitions
def analyze_career_path(author_result):
affiliations = author_result.affiliations
if len(affiliations) > 1:
print("Career path:")
for aff in sorted(affiliations, key=lambda x: min(x.years)):
years = f"{min(aff.years)}-{max(aff.years)}"
print(f" {years}: {aff.institution.display_name}")
# Research evolution
if author_result.x_concepts:
print("Research areas:")
for concept in author_result.x_concepts[:5]:
print(f" {concept.display_name} (score: {concept.score:.2f})")
# Usage
results = search_authors_core("Jorge Abreu Vicente")
if results.results:
analyze_career_path(results.results[0])
# Required
export OPENALEX_MAILTO=your-email@domain.com
# Optional settings
export OPENALEX_MAX_AUTHORS=100 # Maximum authors per query
export OPENALEX_USER_AGENT=research-agent-v1.0
export ALEX_MCP_VERSION=4.1.0
# Rate limiting (respectful usage)
export OPENALEX_RATE_PER_SEC=10
export OPENALEX_RATE_PER_DAY=100000
# For comprehensive research applications
config = {
"max_authors_per_query": 25, # Detailed author analysis
"max_works_per_author": 50, # Complete publication history
"enable_all_filters": True, # Full filtering capabilities
"detailed_affiliations": True, # Complete institutional data
"research_concepts": True # Detailed concept analysis
}
alex-mcp/
βββ src/alex_mcp/
β βββ server.py # Main MCP server
β βββ data_objects.py # Data models and structures
β βββ utils.py # Utility functions
βββ examples/
β βββ basic_usage.py # Simple examples
β βββ advanced_queries.py # Complex query examples
β βββ integration_demo.py # AI agent integration
βββ tests/
β βββ test_server.py # Server functionality tests
β βββ test_integration.py # Integration tests
βββ docs/
βββ api_reference.md # Detailed API documentation
# Install test dependencies
pip install -e ".[test]"
# Run functionality tests
pytest tests/test_server.py -v
# Test with real queries
python examples/basic_usage.py
# Test AI agent integration
python examples/integration_demo.py
# Test author disambiguation
python examples/basic_usage.py --query "J. Abreu" --institution "EMBO"
# Test work retrieval
python examples/advanced_queries.py --author-id "A123456789" --type "journal-article"
# Test integration patterns
python examples/integration_demo.py --workflow "career-analysis"
Perfect integration with AI-powered research analysis:
# Enhanced academic research agent
from alex_agent import AcademicResearchAgent
agent = AcademicResearchAgent(
mcp_servers=[alex_mcp], # Streamlined data processing
model="gpt-4.1-2025-04-14"
)
# Complex research queries with structured data
result = await agent.research_author(
"Find J. Abreu at EMBO with machine learning publications"
)
# Rich, structured output for AI reasoning
print(f"Quality Score: {result.quality_score}/100")
print(f"Author disambiguation: {result.confidence}")
print(f"Research fields: {result.research_domains}")
# Collaborative research analysis
async def research_collaboration_network(seed_author):
# Find primary author
authors = await alex_mcp.search_authors(seed_author)
primary = authors['results'][0]
# Get their works
works = await alex_mcp.retrieve_author_works(
primary['id'],
type="journal-article"
)
# Analyze co-authors and build network
collaborators = set()
for work in works['results']:
for authorship in work.get('authorships', []):
collaborators.add(authorship['author']['display_name'])
return {
'primary_author': primary,
'publication_count': len(works['results']),
'collaborator_network': list(collaborators),
'research_impact': sum(w['cited_by_count'] for w in works['results'])
}
We welcome contributions to improve functionality and add new features:
git checkout -b feature/enhanced-filtering
This project is licensed under the MIT License. See LICENSE for details.
Please log in to share your review and rating for this MCP.