by GongRzhe
APIWeaver is a FastMCP server that dynamically creates MCP servers from web API configurations. It enables seamless integration of any REST API, GraphQL endpoint, or web service into MCP-compatible tools, particularly for use with AI assistants.
APIWeaver is a FastMCP server designed to dynamically create MCP (Model Context Protocol) servers from web API configurations. This enables seamless integration of any REST API, GraphQL endpoint, or web service into MCP-compatible tools, particularly for use with AI assistants like Claude.
pip install -r requirements.txt
.apiweaver run
for the default STDIO transport, or apiweaver run --transport streamable-http --host 127.0.0.1 --port 8000
for the recommended Streamable HTTP transport.http://127.0.0.1:8000/mcp
for HTTP transports).register_api
tool to define web APIs by providing a JSON configuration. This configuration includes name
, base_url
, description
, auth
details (bearer token, API key, basic auth, custom headers), and endpoints
with their name
, description
, method
, path
, and params
.register_api
, list_apis
, unregister_api
, test_api_connection
, call_api
, and get_api_schema
.Q: What transport type should I use? A: Streamable HTTP is recommended for modern web deployments and cloud environments. STDIO is suitable for local tools and command-line usage. SSE is a legacy option.
Q: How do I test an API connection?
A: Use the test_api_connection
built-in tool after registering an API.
Q: What if I encounter a 401 Unauthorized error? A: This typically means your authentication credentials are incorrect. Double-check your API keys, tokens, or username/password.
Q: Can I integrate any web API? A: Yes, APIWeaver is designed to integrate any REST API, GraphQL endpoint, or web service that can be configured with its flexible parameter and authentication options.
Q: How do I provide API configuration?
A: API configurations are provided in JSON format, specifying details like base_url
, auth
, and endpoints
.
A FastMCP server that dynamically creates MCP (Model Context Protocol) servers from web API configurations. This allows you to easily integrate any REST API, GraphQL endpoint, or web service into an MCP-compatible tool that can be used by AI assistants like Claude.
APIWeaver supports three different transport types to accommodate various deployment scenarios:
apiweaver run
or apiweaver run --transport stdio
apiweaver run --transport sse --host 127.0.0.1 --port 8000
http://host:port/mcp
apiweaver run --transport streamable-http --host 127.0.0.1 --port 8000
http://host:port/mcp
# Clone or download this repository
cd ~/Desktop/APIWeaver
# Install dependencies
pip install -r requirements.txt
{
"mcpServers": {
"apiweaver": {
"command": "uvx",
"args": ["apiweaver", "run"]
}
}
}
There are several ways to run the APIWeaver server with different transport types:
1. After installation (recommended):
If you have installed the package (e.g., using pip install .
from the project root after installing requirements):
# Default STDIO transport
apiweaver run
# Streamable HTTP transport (recommended for web deployments)
apiweaver run --transport streamable-http --host 127.0.0.1 --port 8000
# SSE transport (legacy compatibility)
apiweaver run --transport sse --host 127.0.0.1 --port 8000
2. Directly from the repository (for development):
# From the root of the repository
python -m apiweaver.cli run [OPTIONS]
Transport Options:
--transport
: Choose from stdio
(default), sse
, or streamable-http
--host
: Host address for HTTP transports (default: 127.0.0.1)--port
: Port for HTTP transports (default: 8000)--path
: URL path for MCP endpoint (default: /mcp)Run apiweaver run --help
for all available options.
APIWeaver is designed to expose web APIs as tools for AI assistants that support the Model Context Protocol (MCP). Here's how to use it:
Start the APIWeaver Server:
For modern MCP clients (recommended):
apiweaver run --transport streamable-http --host 127.0.0.1 --port 8000
For legacy compatibility:
apiweaver run --transport sse --host 127.0.0.1 --port 8000
For local desktop applications:
apiweaver run # Uses STDIO transport
Configure Your AI Assistant: The MCP endpoint will be available at:
http://127.0.0.1:8000/mcp
http://127.0.0.1:8000/mcp
Register APIs and Use Tools:
Once connected, use the built-in register_api
tool to define web APIs, then use the generated endpoint tools.
The server provides these built-in tools:
{
"name": "my_api",
"base_url": "https://api.example.com",
"description": "Example API integration",
"auth": {
"type": "bearer",
"bearer_token": "your-token-here"
},
"headers": {
"Accept": "application/json"
},
"endpoints": [
{
"name": "list_users",
"description": "Get all users",
"method": "GET",
"path": "/users",
"params": [
{
"name": "limit",
"type": "integer",
"location": "query",
"required": false,
"default": 10,
"description": "Number of users to return"
}
]
}
]
}
{
"name": "weather",
"base_url": "https://api.openweathermap.org/data/2.5",
"description": "OpenWeatherMap API",
"auth": {
"type": "api_key",
"api_key": "your-api-key",
"api_key_param": "appid"
},
"endpoints": [
{
"name": "get_current_weather",
"description": "Get current weather for a city",
"method": "GET",
"path": "/weather",
"params": [
{
"name": "q",
"type": "string",
"location": "query",
"required": true,
"description": "City name"
},
{
"name": "units",
"type": "string",
"location": "query",
"required": false,
"default": "metric",
"enum": ["metric", "imperial", "kelvin"]
}
]
}
]
}
{
"name": "github",
"base_url": "https://api.github.com",
"description": "GitHub REST API",
"auth": {
"type": "bearer",
"bearer_token": "ghp_your_token_here"
},
"headers": {
"Accept": "application/vnd.github.v3+json"
},
"endpoints": [
{
"name": "get_user",
"description": "Get a GitHub user's information",
"method": "GET",
"path": "/users/{username}",
"params": [
{
"name": "username",
"type": "string",
"location": "path",
"required": true,
"description": "GitHub username"
}
]
}
]
}
{
"auth": {
"type": "bearer",
"bearer_token": "your-token-here"
}
}
{
"auth": {
"type": "api_key",
"api_key": "your-key-here",
"api_key_header": "X-API-Key"
}
}
{
"auth": {
"type": "api_key",
"api_key": "your-key-here",
"api_key_param": "api_key"
}
}
{
"auth": {
"type": "basic",
"username": "your-username",
"password": "your-password"
}
}
{
"auth": {
"type": "custom",
"custom_headers": {
"X-Custom-Auth": "custom-value",
"X-Client-ID": "client-123"
}
}
}
?param=value
)/users/{id}
){
"timeout": 60.0 // Timeout in seconds
}
{
"name": "status",
"type": "string",
"enum": ["active", "inactive", "pending"]
}
{
"name": "page",
"type": "integer",
"default": 1
}
{
"mcpServers": {
"apiweaver": {
"command": "apiweaver",
"args": ["run", "--transport", "streamable-http", "--host", "127.0.0.1", "--port", "8000"]
}
}
}
{
"mcpServers": {
"apiweaver": {
"command": "apiweaver",
"args": ["run"]
}
}
}
The server provides detailed error messages for:
streamable-http
for modern deployments, stdio
for local toolstest_api_connection
after registering an APIRun with verbose logging (if installed):
apiweaver run --verbose
Feel free to extend this server with additional features:
MIT License - feel free to use and modify as needed.
Please log in to share your review and rating for this MCP.